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Abstract: A user-friendly 'divide -and-conquer' algorithm is presented for finding all the self-
intersection points of a parametric curve in the Bernstein- Bezier representation. The underlying
idea otf the algorithm is to deal with the Bezier polygon instead of the curve description itself.
By alternately subdividing the Bezier polygon and estimating the self-intersection regions the
self-intersection points are finally approximated by straight line intersections of the refined Bezier
polygons. The algorithm also calculates the parameter values of the self-intersection points. In
addition to the convex hull and the app'-oximauon property of the Bezier polygon the working
of the algorithm is based on a very intuitive aingle criterion.

0. Introduction
For tvwo explicit given curves f(x) and fL(x) intersection points of fi(x) and A,(x) can be calcu-
lated usinsz numerical methods like Newton's method by rewritting the problem as that of finding
the roots (zeros) of the function F(x) =f,(x) -f,(x). If the equation of one curve is given in impliit
resp. explicit form and the other in parametric form, we can substitute the parametric form into the
rnplbczt resp, explicit equation. The (usually non-linear) equation we obtain can be solved by
Newton s method again. If both curves are given implicitly as (non-linear) functions fjx, y) and
,,:x. ; jof x and y or as paramneterized curv.es X, =x(O, yj =y,(t) and X2 = X2(r), Y2 = Y2lr) wAe
have to solve the two equations f(x,. A- = 1) and f2(x. y) = 0 resp. X,1 ) - X,.T) =0 and
-".(I) . = 0 simultaneously, what can also be done by Newton's method [FauxAratt '853]. A
ocometncaly based modification of the methods described by Faux and Pratt to calculate the
intersection points of two paramneterized curves A ~as given by Hoschek in [Hosclwk "5-5]. Hoschek's
method '-orks also for the problem of calculating the self -intersections of a curve. Self-intersections
of a curte can appear for example as boundanes of loops of parallel curves. often called offset
curlves. [Arnold '86], [Farouki '35], [Ilosc/iek 85, '87], [Klass '83], [Lyche,.Mkrken 8,7].
[TilYer.Hansen S4]. For the ioop removal the ,elf-intersection points have to be detected. For ra-
tional curves this can also be done by ahzebraic methods which have been introduced in the area

ofCGDb edrer.Gldanand Anderson They described in [Sederberg '84]. [Sederberg
et al1. 'S4, '.55] and [Goidmann '85] a method of classical alizebraic geometry for solving the curve-
cur-ve intersection problem for rational planar and non-planar curves and in [Sederberg et al. 85]
a method for finding the double points and b% this the self-intersection points of planar rational
cubics (see also [Sahlnont 1i3791 [Hilton 3']. [itu,' er 0]).
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In CAGD the B-spline-Bezier representation of curves is very popular and therefore it is of im- %
portance to have (self-)intersection algorithms for this type of curve representation too. so that no
conversion of the curve description [Dannenberg.Nowacki '85], [Hoschek '87] is nec'ssar,.
Curve-curve intersection algorithms for B-spline-Bezier representations have been described by
[Lane et al. '80], [Cohen et al. 50] and for quadratics by [Yang et al. '86]. Yang calculates the,
intersection points using an algebraic method while the algorithms of Lane and Cohen are subdi-
vision algonthms taking into account the geometric relationship between the curve and its defining
control polygon. Pure subdivision algorithms are very time-consuming and need a lot of storage
space [Giths '75] but they can accelerated by using in addition an estimation of the intersection
re,.ion %%hich yields to the so called 'divide-and-conquer' algorithms. For B-spline-Bezier repres-
etuations the estimation of those parts that do not participate in the intersection can be done by
usin the convex hull property [Lane et al. ' 0], [Peng '84] (see also part I of this paper) or. rougher
but more easily and quickly handled by min-max boxes (see part 11 of this paper). An estimation
using rnun-max boxes can also be done for non-B-spline-Bezier representations [Koparkar.Aludur
'33].
A disadvantage'of the subdivision and even of the more advanced divide-and-conquer algorithms
against the algebraic based intersection algorithms might be that they are more time-consuming

ecause of the-subdivision process [Sederberg,Parry '86]. But the great advantages of the divide-
and-conquer algorithms are that

* Qtiey are very user-friendly - no worry about 'suitable' starting points,
thev find independently - that means without any interactive disruption to the user - all inter-
section points within the specified tolerance,

" they can be formulated easily for arbitrary polynomial degree and for non-rational and rational
representations, and

" they are numerically very stable because of the extraordinary numerical properties of the Bernstein
polynomials [Farouki,Rajan '87], [Sederberg,Parry '86].

Because of these favorable properties of the intersection algorithms based on the B-spline-Bezier
representation using divide-and-conquer methods and because of the reason named above we would
like to have also a self-intersection algorithm of this kind. The existing curve-curve algorithms can
not be used directly by doing the curve input twice, because in this case the divide-and-conquer
method will fail in the sense that no elimination of curve parts that do not participate in the self-
intersection will be possible. Furthermore the final calculation of the self-intersection points, done
bv intersecting straight line segments defined by the control polygon will also fail by doing the same
polygon input twice.

The only self-intersection algorithm for B-spline-Bezier representations I know was given in
[TillerHansen '84]. They calculate self-intersections of (rational) B-spline curves in a two step
procedure. First they find the intersections of the control polygon with itself and then they use an
iterative method (e.g. Newton) to improve the approximate solution found in step one. They know
that this method can fail, because a curve can have a loop even though its control polygon has no
self-intersection, but by using control polygons which approximate their curves very closely. i.e.
building up the curve by a 'large' number of segments, they try to make sure to be 'on the safe side'.
Although Tiller and Hansen are working with B-spline techniques, their algorithm dosent belong
to the powerful class of the divide-and-conquer algorithms because their algorithm dosen't use the
typical kind of strategy of the divide-and-conquer algorithms for the evaluation of the self-
intersections.

The algorithm presented here is a user-friendly divide-and-conquer algorithm for finding all the
self-intersection points, including their parameter values, of a parameterized non-rational or rational
curve of arbitrary degee in Bezier representation. For the creating of the algorithm the geometric
relationship between the curve and its defining control polygon was fully taken into account. By
alternately subdividing the Bezier polygon and estimating the self-intersection regions the self-
intersection points are finally approximated by straight line intersections of the refined Bezier
poly Ron. In addition to the convex hull property and the approximation property of the Bezier
poivgon the algonthrn is based on a very intuitive angle criterion which is together with the convex
hull property used for estimating the self-intersection region of the curve.
Because a curve-curve intersection algorithm is an Important part of the self-intersection algorithm
of part III of the paper, and because the final calculation of the self-intersection points and its pa-
rameter values is done in the same way as in the curve-curve algorithm, a short explanation of a
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divide-and-conquer algorithm for calculating the intersection points of two parameterized non-
rational or rational curves of arbitrary degree in Bezier representation is given in part 11. The
curve-curve algorithm described there differs from the 'classical' one introduced by Lane [Lane e,
al. '50] in some 'details', mainly in the concept of the 'control unit' and in the final calculation
of the intersection points and its parameter values.
Part IV finally includes a short description of how to calculate the self-intersections of a Bezier
spine curve.
Al algorithms are written for planar curves, but for the extension to spatial curves only 'a third
ei:Uaton !ur the :-coordinate ' has to be added everyvhere where coordinates have to be evaluated.
The paper starts with some introductory words on the Bezier representation of (planar) cunes.

L Bezier Curves
A (planar) Bezier curve is defined by

B(u) = E bk BT(u)
k O

where b, = (x, , ), e R2 , u e [0,1] and

tmUk U k
BZ(u) = (I - u)''

are the (ordinary) Bernstein polynomials of degree m in u. The coefficients b, e {R are called Bezier
points. They form in their natural ordering given by their subscripts the vertices of the so called
Bezier polygon (see Figure 1).

It is possible to build up complex Bezier splme curves from a number of Bezier curve sem'nents.
The conditions for C' continuity of adjacent curve segments can be found in [Boehm et al 84-]. r

The Bezier description of a curve is a very powerful tool because the expansion in terms of
Bernstein pol. normals yield to a geometric relationship between the curve and its defining Bezier
points. For example: %

" the Bezier polygon gves a rough impression of the Bezier curve (see Figure 1),
" the curve has its endpoints at b, and b., with tangent vectors defined by b0, b, and by b, b.,

see Fieure 1l.
" conex hull property. the Bezier curve lies completely within the convex hull of its Bezier polygon

(see Fizure 2).
" the cure point B(ub). for any u0 c [0.1] can be computed by repeated de Casteljau steps by the

recur~son formula

=l( (l-t) -1 (u) + uO + (u)

, "ere b, b. and B(u,) = (see Figure 3).

The point u = u, subdivides a Bezier curve into two C" continuous segments. Each segment is again
a Bezier cur e of the same degree as the original one. The Bezier points of these two segments are
)4'rc.:.c of the de Casteljau construction for the evaluation of the point B(u)). They are zven

b W and b,: ik = 0.... my. The subdivision process may be repeated yielding a sequence of
pol,. ions. For thb sequence of pol,,ons we have the important
e ap~roxima t ton properr i~f the u are dense in [0.1] the sequence of polygons converges to the .%

c U r"% e. .

Fiure 4 dlu~trates how, the curve can be fixed using the approximation and the convex hull prop-
Cr11v
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Figure 1. planar Bezier curve of degree ive

Figure 2. convex hull property
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Figure 3. de Casteliau construction 
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Figure 4. fixing the curve by the approximation and the convex hull property

A rational (planar) Bezier curve can be defined by

R(u) = 'bk Rm(u)

%khere b, = (xY,) e U1 uE [01I] and

Rj B(uu

% are tlhe rational Bernstein polynomial of dezree r~in u with weights The 2 [Piegi '56].
Fi~e5 compares the fordinarvi Bem~ticLn jN)\flomnals B,-lu) and the raional Bemstcin

pol'xnomiuals R:(u) wvith f? >13for allk
I!, A* e demand fl, > 0 for all k we have all the properties and algorithmrs for rational Bezier curve "s

wAihe have for ordin i.e. non-rational cur-.es [Farin S2]. [Tiller 52]. therefore there is i this
cjse no pric:ple difference betw.%een a c:urv e-curve rcsp. a curve self-intersection algonitl-un for
non-rational and for rational Bezier curves.

% %%
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Figure 5. ordinary, and rational Bernstein polynomial of degree four, ( fl3 . t ) = ( I. 3. 2. 5. 1)

II. Curve-Curve Algorithm

The underl'ing idea of the curve-curve algorithm is to deal with the Bezier polygon instead of the
c:rve description itseLf. using the relations between polygon and curve mentioned above.
1 he progam of the algorithm is to subdivide both curves repeatedly which yields at the same time
to a !ubdiu.sion and refinement of the polygons. This is done until a fine polygon structure is ob-
taned and the curves can be approximated well by the polygons defined by these subdivisions. F-his -

procedure reduces the problem to a number of straight line intersections that can be handled easily.
B-cause ubdlvidmq the whole curves in each algonthm step is relatively time-consuming and needs
a lot of storage space in addition an estimation of the intersection regon is done.

The al2onthm consists of four main parts (Figure 6), they are described now.

" First. the intersection area is estimated. Using a coarse but very quick estimate of the possible
intersection regions of the two curves those parts of the curves that do not participate in the t
intersection ,dl be eliminated as early as possible in the algionthm.

" Second. refinement occurs by subdividing the Bezier polygons. Except at the beginning, the al-
.onthm subdivides not the whole Bezier polygons. but only those parts whose corresponding K
cur-, e portions rmght participate in the intersection. An adaptive subdivision is done to detect the
separation of rezions of the two curves that do not intersect readily. -.

* I iarJ. the ,ntersection points are calculated by intersecting the Bezier polygons of the curve
sub-'.zments of possible intersection. Part th.ree also calculates the parameter values of the
inter-ection points. -"

o, FO -h e.ror values are calculated. tolerances are checked, this part of the algorithm is the con-
trouna un.i t of the algorithm and is verv important Ior dealing with difficult and complicate cases. "p

Beside drawing parameters for creating the plot output, the input of the algorithm consists of the
pcixrnorrual degrees (A and m) and of the Bczier points of the two Bezier curves (BT) and btn.
:, rthertnre of an error tolerance value to dermne the accuracy needed. Pre-settings for con-
troLling th e alronthm can be specified in the progam too.

The First ,tep of the al-onthm is to subdivide the two cun'es simultaneously foming two new
,ub-encents on each curve. A ninn.mav box detined by the maximum and mnimum x and y co-
ordinates of the cure scznents defining Bezier points is built for each segment. The boxes of the
t'Ao c,:rvcs are then compared Aith each other (a companon using nm-max boxes instead of the
con'.,:x halls is rouchcr. but much more ea,,til han dled and quickly practised). Those subsezrnents

6
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whose boxes do not intersect any box of the other curve wiffi no longer be considered. OndB those
subsezmients %hose boxes can not be scparated from that of their rivals %kidl be dealt MAth fur-ther .
Fieure -. For this. Bezier points of pairs of interfering subseenents of different curves --ill be

pro% ided k ith an subscnpt. called intrerence index'. B% this a list of pairs of ,,e,-ncnnts ot different
curves 'A hikh rniaht in-,Lrlre is creLated. In the followine, lezier points, i.e. seienis of the ame
inte-rfe;rence- index, wLU all o throue-h the ale2orithmn subroutines.
The de Catvilau subdivision process. the mmii-max box formation and the separabilit- test are
connected 1,y an alzoorthm loop. which vill be done as often as is required by the levelI of accuracy
rne-ded. .Xtreach subdivision, two new subseaments are formed, each corresponding to a ,rnaller
convex hull. Wn-ren more and more subdivisions are done each convex hul-l becomres, mahicr and
smaller. %%hile the curve topology near the intersection is reasonably closely approximated b% the
pol\ ons of the subseements.

loop 1
intersection

control unit
Loop 2%

output

Figure 6. principle structure of the algorithm pt9

D %

Figue 7 estmatng he iterecti n rgio usig mn-ma bo es-

,U shsenens wich igh paticpat in he ntesecion o trouh te tird artof he lgo

nth: h sctontht omuts he ntr~ctonpont ad hepaameervaue o te inerecio
(,,uits~~~ ~ ~ ~ ~ ~ ~ Mit1 ednei h olo %y
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Let BAr) a subsegnent of the first curve B( T) of degee Af and

Bj =B. .. B}))

be the Bezi r points of B,(7) and let bir) a subsegment of the second curve b(t) of dc=ee m
and

rZ

bk = (bx ,bk) k0.. m

he the Bezier points of b,().2
The polygon legs defined by the Bezier points are given by

Gj Bj + TS =0 . I

\here G =(GX,.GY), S.=(SX. S ,). S. --B,_ B. and T e [0,1] and simildar for g,.
If G and g, intersect in P (Figure 8) i.e.

Gj( =j=T(P)) = P = g,(tk=t(P))

we have for the parameter values

F(P) = S~V (B j - bxA) - SXk (BYj - byk)

and

S) Yj(a - bxk) - SX, BY) -j vk)

where

.'jk = sYjsx - SYkS s
P) resp. t(P) are parameter values with respect to the polygon legs G, resp. g, but because

the de Castellau refinement is always done for 0.5 we also know the parameter value T. of
B, = B,.0) and the parameter value t, of b, = b,(0) so that the parameter values T(P) and ,iP)
of the intersection point P with respect to the parameter intervals of the oriznally given Bezier
cur. es can be calculated by (Figure 7)

T, -4- (Tj.- T.)TP
T(P) = Tj

and simuiar for (P), where s is the number of subdivisions and T, are the parameter values given

to the Bez:er points B of the Bezier polygon of B,4T). The T, (and so the t, given to the b.)
can be dc:hned in different ways for example

by an equidistant measure P.

by an chord length measure

t l "BI.,-B 11 where L = - B , I

by an geometric average measure of T, and T:

T 7er

'I.

..:,1



bk+1, tk+l

Bj Tj / .
RJb,.-- K (r)

Tj / /9Tkbk, fk Bo / T

Figure 8. calculating of parameter values of the intersection points

As a measure of error we can use the distancesI

RBb = 11 B(T(P)) - b(t(P)) 11

Rbp = I b(t(P)) - P II

% Per default a minimum number of de Casteljau subdivisions will be done before part three will be
started (loop 1). If the accuracy needed is 0.002 for example the pre-setting has to be 6 (see table
1) an this will yield in almost every example to an accuracy of about 0,002, if in some complicated
case not, the control unit will effect to do as many additional subdivisions as needed for the speci-
fled accuracy (loop 2).
When the two curves intersect in a very small angle or do not intersect, but come very close together
part three might calculate more intersection points as two curves of degree M and m can produce
or might calculate (pseudo-)intersection points lying very close together in parameter space which
has to be checked ithe statement of the parameter space criterion is stronger than an statement of
an analog coordinate space criterion). In both cases the control unit will also effect to do as many
additional subdivisions as needed for clarifying the situation.
The repeatedly done polygon refinement initialised by these criterions will be stopped in different
wa\ s: trst. if the result has the accuracy needed. second, there is a default of an upper boundary for
the number of de Casteljau subdivisions and third. there is a default of an maximal (possible) ac-
curacy This default value is dependent on the initialization of the variables, e.g. real or double
precision real and of the machine accuracy for each kind of initialization.
FinaUl the control unit checks if the distance between intersection points in coordinate space is less
than a specified tolerance. If yes. an intersection point is defined by the arithmetic average of these

Examples

Table I lists the maximal error

R = max RB6,RBp,Rbp}
-Ip

as it depend upon an increasing subdivision factor for the examples I to 6 for equidistant
pa.rarncterization for luch 'ke got the best results

7 ,4.--



subdivision factor 4 6 -

Example I ).0091)-4 1) i0 11130 0 00)39 r) II )1 , ,

Example 2 0.)4563 O.009N 0()2 10 (, n)l) 20
Exanple 3 0 (j()273 0.1)0)71 0).,u ) 14 0) 10uu5 r, I i

E xample 4 0.00450 ).00271 0.00121 0.U_))4"  ,'' ,
Example 5 0.03817 0.01 37 0.00u260 0 0O)iA2 0 , H,

Example 6 0.)5235 u.(o)56 0.1) 177 '.'.U0057 '. ,2

Table 1. R for equidistant parameterization ,

IExample I .

-.

12 i~q 0.-362 009S-

Ix m l t- '1 1j(02 9 1 . ,

:5-

100 I%

PA-- PYbySN

.5,.

paamte vlus ndx--corinte o te te~et~n oits Beie pins f u)an o B f -

P.V Y r P).. p bx by 9V B
-3.1 iuO .% 36 0.0 834 " ,, 4 3.3 .3 - 0 -) 3
1 6"41 0 02q ( l) . :; '2 '),3 -17 -~l) .,

JU

",l f 6 29S 0.6 3 I ,- S. . 23 O -



Example 2

F

'I

'I

.5,

0-

.

"

,b

5,N

PA, P Y T P) :P) ; B. B Y

1l Vi, I i-249 0.03029 - ) 0.0

5 05471 7 S 0 14) 13)
" -50 ..q ' 0l4 S") _,___,.___3 ._.____,)_,J_"

,','* 39434 ,'391"5 __.__.___3__._ ,) 1,__'.!3

'_2 ; 125',h 1 25 'Bezier points of b(t) and of B(7 T

parameter %alues and x-,-coordinatei of the intersection points

N IN
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Example 3

P.\ PY T(P) t(P) bx b~v BX B Y
-f ,4 3 53 1.980. 0.0., 0 -5.0 0.0 -6.0 3.0

-2.92393 1.50086 0.2930 03)4 -).0 3.555 -6.0 -0. 5

-0.7"r325 1.49989 0.44827 0.454039 -3.0 - 1.0 =-3.0 4.0

1) -325 1.499089 0.55173 0.54591 0.0 4.17 0.0 1 -1.17

2.92393 1.5 0096 0.70670 0.678352 3.0 - 1.0 3.0 4.0

3 .0643531 1.49R22 0.76890 0 72695 5.0 3.555 6.0 -0).555 %

5.0 0.0 6.0 3.0

parameter ialues and x-y-coordinates of the intersection points Bezier points of b(t) and of B(T")

12
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Example 4

PX PY T(P) IP) bx b_ _ BX BY

-5 310 2.23393 0.14418 0.06613 -4.0 0.0 -S.0 1.0

-2.6-,S 113 3.21920 0.33243 0.35152 -10.0 6.0 0.0 6.0

2.68 113 3 21920 0.66757 0.64848 -2.0 6.0 8.0 1.0
5 69131 2.23393 0.85582 ).93387 -2.0 0.0

2.0 0,0

2.0 6.0
parameter 'alues and x-y-coordinates of the intersectuion points 10.0 6.0

4.0 0.0

Bezier points of b(t) and of B(7)

13



Example 5

PX P Y T(P) toP) bx by BX B Y
.3 - ,j 159 -4.10,631 0.017S7 o12443 -1.5 0.0 -3.0 -50
-5.4-53 -1') 6332 0.10171 0.2SI10 -1.5 -8.0 -12.0 S.o

(") 4.14.4 0.50(100 0)5)00 -10.0 - 0 BY,
-1 5 "4 53 -0.76332 0.SOS29 07lSo -100 9.0 S.0

3 0,,359 -4.10631 O.Q9213 0 S-557 0.0 9.0 3 0

10.0 9.0

10.0 -.5.0 BY2 2062507
parameter ialues and x-y-coordinates of the intersection points 1 -0 ., € -1.5 -S.0

-1.5 0.0

Bezier points of b(t) and of B(T)

-14



Example 6

,I.

P F____ P T(P) t(P) -xB

a,~~ 1,4 6 6328 0.031 S4 i. 1. _____10___ ____

t T~i *O t 1)2 O.339q( o-) 14. 60
VII4 A -2-3 219 0.49353 0. -10__ i~

4- r -2.[7,43 0.6214-S -)23 0 -61) -1

-3 4 1.1)140 3 _1 0.9661S L :___ 3 ___

parameter Nalues and x-y-coordinates or the intersection points o 1

SfBezier points of b(t) and of B( 7)

B Y, B BY, % 419~)a

-

,.

"--

PV *"TP P bx ;' B6 % ?"~- ,. A.



III. Self- Intersection Algorithm
It is no~t possible to calculate the self-mtorsection of a Bezier curve hNw the curve-curve al-,onthm r1
of I I b% Iogth cu- - mpt wice because in this case the eparabit% te~tof Im--max ',o,..s

%dl be.i'.eo ht i elimmation ofcurv.e paisthtdno ai,:teuth-l-
,::cns o- ~be.Furthrmore part thre will fad by doingz the same input t-. ice. so that an

2adJ twr~ai ennon is ncce-sgarv-.
What L~ W ko to hia'.e is a zeometric criterion based on a rel,,tion between thece and ats

~eiuoBc, cr pomns I -. its Bezier polveon which is as 'imple and at the same time is trong as
t"", convex nud; ropertY, Thius turns out to be more dulicul than it looks Lke first, because the

~uton ~s cmictdb% the fact that

*it is poss ible that the Bezier pol, gon has a seff-intersection but the Bezter curve has no sea'-
:ntvrsection (see Fiirure 9)

but on the other side even

e if the Bezier curve has a self- intersection the Bezier polygon does not have to have a self-
ite rsection (see Figure 10).

0a

Figue 9.polyon slf-itersctio

0I

Figure 9. polygo self-intersection

del'
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Furhcrrore.

*if __ !ie urn ot the anmounts of the rntition ani-Tes x. of the 13e7,:er po!\ -,on ~;
r t han -r:he L..' cur'.e do~not ha%, to ha., a a eL, rnt,-rse:non 1ee )~r 1 nd

* .-a. ~rct a = to u~ I of at he xinounit of the rotat:on Lazale of th, tun-,.nt .a

B' 13-uLr ca-r. L o; -aEtr than 7the Bezi;er Cur. -, does not ha'. - to ha. - a -

* te um of ,he -uriount of the rotation re of -he taneent %ector of' the Bezier cure is zcater
''i - the!. Be:zier cur'.e has a ,;-,-nter: e.tion r ce[iur 13).

(X

Figure 11. x~ j > r, 'no self-intersection

Figure 12. no self-intersection

* ep
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Figure 14. all c with same orientation

I'4.
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%-

P 2.

C(2 P4.
Figure IS. a, with dferent orientation 7- 121i > I rI > ...
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Because of the de Caste!jau construiction .% hih creates 'In ev'ery, step a convex' combination of the
bl and because of the approximation rropertv mentioned in1 parn I. the sum z ly, is equal to !he.
sum of the amount of the rotation anele of the tanizent vector of the Bezier curve if the onientation
of the rotation angles of the Bceicr pol'. eon Lnzs is the same in ever- inner Bezier point (see Ee.r
141. But the sum of the amount or the rotation anelJe of' the tanuent %ector of the Bezier cur-ce Is
-maller than d i the orientation of the rotation anzles of th Bezier poi\ e-on le~Is not the
sante in e;2vinner Be-zer point (seFigurc 151. that fol-lows from the smoothing~ propert% of' the
Ll;e Castellau u,_bdivision process together %kith the approxi-mation property mentioned in part 1.
So %%L ha; , hc stateme-,t that

a the sum of the am'ount of the rotation anale of the tanuent vector of the Bezier curv-e is aB%%a; s
smaDler or equal the sum of the amounts of the rotation angles of the Bezier polyco0n es.

By combinineu the two a statements we get the

*ankle crite-ion: The sum ~ ~of the amounts of the rotation angles of the Bezier polygon legs
is L~reater than -r if the Bezier curve has a self-intersection.

For the aleorithm w;e will use the contraposition of the criterion.

* anzl7e criterion: A Bezier curve has no self-i'ntersection df the sum V. 1,a of the amounts of the
rotat'lon angles of the Bezier poly gon legs is smaller or equal than ir.

By- this wke have a veryv simple geometric criterion for deciding whether a curve has a self -intersection
or not and for the elinuniation of curve parts that do not participate in a self-intersection. What '. e
ha. e- to do isto calculate the sum Y ja, of the polygaon angles 2, and compare with -r . If ;xe
hate -r we know that there is no self -intersection of the curv-e (Figure 16.1 and 16.2). but

.4if y la.i > -r the curve mie-ht have a self-initersection (Figure 16.3 and 16.4). For clarif,.ing '.ke
subdivide usi de Caste1'au and check the smaller parts again against the angle criterion.

Figure 16.1 Figure 16.3

pX 
1

(X 1

Flizure 16.2 Figure 16.4

aFigure 16. the angle criterion

19
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ro build up a sectf-Lntersection aleonithrn the idea, of the aniale test has to be combined wkith the i!dea
of the min -max box test. I his is; done in the fOoo\ne way
The alzornthm consists ainof the four main parts of Figure 6. But part one of the alieonthmn for
et .rnatm, .: seLf-intersection rc-,:on of theL cur-,e consist s no~k of'tt% o differenit tests, the, 'rim-tMIA

box un d the ancie', testz. Ite b.ne the example of an subdividedl Bezier cur. e haL me-
,rai t,,-uLlrecions. As ,'e can s eL there IS a suin'sezrent (subs -eriet B,) "Ith cUe-interse,11.1

rpo.t P ihr are tw.o subeornents \'.ith common boundary point (sukseements B, and B-, crc-
-',J-mtersecticon point P, and there are subseinnents (subs;egments B, and B~i \.hichar

,,,t ~o--:uto Leaen: other but create the self-intcrsection point P, of the Bezier cu:-.;: Bi T, Io
'u-h ct; centhe-se three diacln cases and for controLLng the alzorithmr wAe introduce a so

1 hL -clfu rt.'rsetion of a 5e-nent of g.enus one that means a seament of case one has to be checkedP
by r_ usite e criterion. It- the an -?le te~t is positi~e e.g. Y 1ic,; > r a retinement has to be done

to !,f; h ituation The reement of a 2Lnus one segment produces t,,o subsezments 0! Ze-nus
one1- and one pair of subseu:rnents of 2crnus t%%o.
A\ pair of subsei-nents of -,Lnus 1%%o that means subseinnents %kith a common boundary point ha~e
also to lbe checke.d auainst the aneleJ, criterion but now the angle sumn of both pol% gons has to be
,:adcuiated. The min-max box criterion can not be used becaus-e of the commn-on boundary poit
of the t~o seornents. If the angle test is positive a refinement has to be done for both sezrrents, it
produces one-pair of subeernents of I enus two and three pairs of subsezments of genus thiree.
Subaznents of --enus three can be dealt '..ith as in the curve-curve algorithm of part 11 i.e. for i
calculatin2 the sl-intersect Ion point P, of Figure 16 %ke do need only the mmii-max box test not
the uncle test because the refinement of pairs of seg.ments of genus three can produce pairs of sub- I
se_=,nnts of uenus three only and no (pairs of') subse~nents of genus one or twvo.

B4 B
BS

Bo B7 r
Figure 17. possible subsegment configurations contributig to the self- intersection

In the first s.tep the algzorthm has to deal onily with one curve segment of genus one - the Bezier
cur-.-. c.:ment -hilch has to be checked for self-inters ections. If the anele test is positive a refinement V
!,.s to be done, so that in the second step the alot~ has to deal with two subseginents of genus
one adone pair of subsegments of genus t,.o ird the result of this step might. be subsegnents of
-nus one and pairs of subseinnents of cenus, t a or three. When moeadmr sudvionar

done not only each convex huU becomes .mal!ler and smaller but because of the approximation
properv of the Bezier pohgon also the ane,_e -ume of each subsegment becomes smaller and
smaller ~o -hat after an in-itial increase of fpairs olh -ubse2mcnts Of genus one and t,; o the number
of t pairs ofi subse=ents of genus one and ta o decrea-ses very fast until there are only pairs of
U-ubse=nnts oi' ,cenus three. From this mom en: on the self-intersection aleonthm Aorks in the

same %%,, as the curve-curv e aleorithm decbx n par 11 of the paper. That also means that part
tao and part three of the algorithm - the uh_ 'o of the curve in the aim of refinement and the
caiculation of the self-intersection points j-;,d -'-unmeter values - is done in exactl\ the same %a%
as decribed in part 11.

200
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The control unit also works as in part 11 descnbted except that it checks in addition if the ,ubdi-
vided control polgon turns thiroug.h ISO dezees at a subdivision point which impLies a cusp at t",is
point (Example 4).

Examples

Table 2 lists the maximal error given by , part 11 as it depend upon an increasing subdivis;on
:actor for the examples I to 12 for equidistant parameterization.

-ubdi. i-;ion factor 4 5 6 7 q

Example I 0.20. 01093 0.00568 0.00269 )I)IJ0110

Example 2 O0.0635 0.0362S 0.01297 0.00 1S9)  0AJ-5

Example 3 0.20799 0.09101 0.02185 0.00619 0-0 101
Example 4
Example 5 0.02390 0.00445 0.00156 0.00007 0l ",3

Example 6 0 03326 0.01207 0.00236 0.00080 0.0,)0,

Example 7 0.04659 0.01579 0.00055 0.00027 01)012

Example 8 0.06235 0.02459 0.00620 0.00150 0.00O0

Example 9 0. 10368 0.01132 0.00434 0.00162 0 0032

Exainple 10 0.101S4 0.01123 0.00427 0.00159 0-00032

Example II
Example 12 0.07962 0.00794 0.00332 0.00124 0.00025

Table 2. R for equidistant parameterization

Because of the bad character' of the two cusps appearing in Example II, this example requires
more than S subdivisions for the decision if the curve has self-intersections or cusps.

.21
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Example ! 
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• 1
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Example 2

S..

a

'

'.i

S.i

5,%

5,w

S.parameter ialues and x -coordinates oC the intersection point g

"VI

., "7 , I)

-5, 5'

.. '5 , U) ,)

'SI

iictier points of b 1)
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- .... 'h..a.

Example 3
-p

7I,

lpp

P' py ta P) 12( P)
0.90426 5.u7460 0.08358 0.44207

-0.90426 5.07460 0.55793 0.91642
0,)0000 5.7190) 0.05154 0.94S46

parameter value.' and x-y-coordinates of the intersection points

bx by
-2.0 8.0

3 0.0
3.8 8.0
38 8.0

o -1 0

-3 S SA)
S3 .0

-3 S 0A)

Bezier points of b(t) 
24
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% -.y .. .!. . It -f F--7 r-A i-. W; W. W. W. 4" dwv4

* 
Example 4 

S

-2 0 i

Bezier points of b(I)
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Example 5

PXk P Y t (P)t. P

0).,33333 2.4.4-W4 0.21133 0. SS67

parameter values and x-. -coordinates of the intersection point

.. 4.

'p.)

'p..

I A f P ' - .P)

Beier points of b(tI)

26



Example 6

0*

*%

0. 0, 1)

-2.0

Bezie poits o b*t
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Example 7 "

..

'4'

p

.

0.-//OS9 6.2642 .1403 0-216

%

( D

'..

P'Y p1 y t4(P) t..1 P)

0.770S9 6.26442 0.14003 0.92162

-2.0 0.0

B p.o
paaeervl ezi p-orints or the inescioon

L ".4

-'.
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Example 8

0,

4,

PX P K t,(P) tilP)

.5322 6.5167 I).41859 0.2-22

parameter values and x-y-coordinates of the intersection point

B e i e p o n t of t) 
1

.." ' " 1411)

Bezier points of b( I)
29
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Example 9

PA Py 1P) _ _ _

-0.65030 2."2 "3 017750 0)58924 -

0.00000 3 013,2 W22167 0.77S33
0.65030 . 0 -4106 , 8225)0

parameter values and x-k.-coordinates of the intersection points

.' .to

'.

Bc,cr pint%, of bi t) '

m.4.



Example 10

3 S4

parameter values and x-' -oordinates of the intersection points

Heiier points oif bi 1)

31
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Example 11 '

P.V PY '(P I'A'

()()~oi) 3 3S 2 22167 o -A1

paraete vales nd xy-cordnate ofthe ntesecton oin

Bezie poits o N r

1 7 539) 3

%,%



Example 12

o- .P ......

ivi

A,.,

parametervaluesian p--oorints of titreto)on

33

.;,.

" 41) ""

22

.. parameter values anedie p--oorints of theitreto)on

.5 ,.-. -.,, . . . . -p - - -

~.,, )



IV. Self- Intersections of Spline Curves -

N -Th~ v-not m B'ccedi iccEzier curv;e cznents but in B3-,pline rc-sp. Bezitr
Le "t :,am r 1cr-L s-ct 1 3LcuL a 13-T pme curve can he rc dcfined Ll

a;t 2 ,)cr-,th- rn -on :tile knots i one pass [Coiien et al. > r
- \ ~~more o iet oci ith-in aid ig the multiple kniots one b\

L -1-i~~r.,:sect,.ons of B3- pLne and of Bezict -plme curv-es can be calcuiat-cd
U 1.1 '". )I -ar 11 i and III.

[he. -,'=Lis B,:o of' the Be.zier representation of' the rline curv'e rmht be zien by-

Bkfu) bl Z 1"!(U)

v. h LrLc

U) = )AK- U AK- 0 u 1I K= 0. M

e. the spline curse is defined with respect to a partition of the domain space by knoits

The se-Lf-intersection points of a spline curv.e can be calculated by doing the curve-curve intersection :
uJ 2oflthzn for ald pairs of seenents BK and B- wkith K # K and by doing the cur-, el D
1n1.Lrs;ecnon1 alc--orthm for all se nents BK -\While the algorithms of part 11 and Ill calculate the
paran tcr - a! :c-; of the self-intersection points ,% ith respect to the local coordinate domain[2I
- L also inow% - because of the Linear relation between 4 and u the A parameter values of the
sef-itersect~on points.

Remark

I lis5 studv was done as a pre-study for the creating of a surface seLf-intersection alizonthrn for .
raretriedsurfaces in Bezier representation. The surface alzonthrn is desc-nbed in the paper

Scdf-Intersectiomi of Parametric Surfaces T-echnical Report \PS-53-88-00.2. Naval Postjz-aduate

%Iontrc% J
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